Business Wire

In a World First, Yokogawa and JSR Use AI to Autonomously Control a Chemical Plant for 35 Consecutive Days


Yokogawa Electric Corporation (TOKYO: 6841) and JSR Corporation (JSR, TOKYO: 4185) announce the successful conclusion of a field test in which AI was used to autonomously run a chemical plant for 35 days, a world first*1. This test confirmed that reinforcement learning AI can be safely applied in an actual plant, and demonstrated that this technology can control operations that have been beyond the capabilities of existing control methods (PID control*2/APC*3) and have up to now necessitated the manual operation of control valves based on the judgements of plant personnel. The initiative described here was selected for the 2020 Projects for the Promotion of Advanced Industrial Safety subsidy program of the Japanese Ministry of Economy, Trade and Industry.

This press release features multimedia. View the full release here:

To view this piece of content from, please give your consent at the top of this page.

Distillation columns at the JSR chemical plant (Photo: JSR Corporation)

Control in the process industries spans a broad range of fields, from oil refining and petrochemicals to high-performance chemicals, fiber, steel, pharmaceuticals, foodstuffs, and water. All of these entail chemical reactions and other elements that require an extremely high level of reliability.

In this field test, the AI solution successfully dealt with the complex conditions needed to ensure product quality and maintain liquids in the distillation column at an appropriate level while making maximum possible use of waste heat as a heat source. In so doing it stabilized quality, achieved high yield*4, and saved energy. While rain, snow, and other weather conditions were significant factors that could disrupt the control state by causing sudden changes in the atmospheric temperature, the products that were produced met rigorous standards and have since been shipped. Furthermore, as only good quality products were created, fuel, labor, time, and other losses that occur when off-spec products are produced were all eliminated. Safe operations were ensured through a three-step process.

The AI used in this control experiment, the Factorial Kernel Dynamic Policy Programming (FKDPP) protocol, was jointly developed by Yokogawa and the Nara Institute of Science and Technology (NAIST) in 2018, and was recognized at an IEEE International Conference on Automation Science and Engineering as being the first reinforcement learning-based AI in the world that can be utilized in plant management*7. Through initiatives including the successful conduct of a control training system*8 experiment in 2019, and an experiment in April 2020 that used a simulator to recreate an entire plant*9, Yokogawa has confirmed the potential of this autonomous control AI*10 and advanced it from a theory to a technology suitable for practical use. It can be used in areas where automation previously was not possible with conventional control methods (PID control and APC), and its strengths include being able to deal with conflicting targets such as the need for both high quality and energy savings.

Given the numerous complex physical and chemical phenomena that impact operations in actual plants, there are still many situations where veteran operators must step in and exercise control. Even when operations are automated using PID control and APC, highly-experienced operators have to halt automated control and change configuration and output values when, for example, a sudden change occurs in atmospheric temperature due to rainfall or some other weather event. This is a common issue at many companies’ plants. Regarding the transition to industrial autonomy*11, a very significant challenge has been instituting autonomous control in situations where until now manual intervention has been essential, and doing so with as little effort as possible while also ensuring a high level of safety. The results of this test suggest that this collaboration between Yokogawa and JSR has opened a path forward in resolving this longstanding issue.

Yokogawa welcomes customers who are interested in these initiatives globally. The company aims to swiftly provide products and solutions that lead to the realization of industrial autonomy.

JSR believes that this demonstration shows AI’s potential for addressing challenges that previously could not be resolved at chemical plants, and will investigate its application to other processes and plants with the aim of achieving further improvements in productivity.

Going forward, the two companies will continue to work together and investigate ways of using AI in plants.

Masataka Masutani, general manager of production technology at JSR, commented,“In an environment that is changing due to factors such as the fully-fledged introduction of 5G and other developments towards a digital society, as well as the aging of the human resources who ensure plant safety and a lack of human resources to replace them, the petrochemical industry is under strong pressure to improve safety and efficiency in its production activities by utilizing new technologies such as IoT and AI. The orientation of JSR is toward making production smart through a proactive incorporation of drones, IoT sensors, cameras, and other new technologies, and in this experiment, we took on the challenge of the automation of plant process control using AI control technology. We verified that AI is able to autonomously control the processes that were previously performed manually on the basis of operators’ experience, and we are firmly convinced of the usefulness and future potential of AI control. From those in the field, we have heard comments saying that not only has the burden on operators been reduced, but the very fact that we have taken on the challenge of this new technology and succeeded is motivation for taking forward DX into the future. Henceforth, we shall expand operations controlled with AI, and work to enhance chemical plant safety, stability, and competitiveness.”

Takamitsu Matsubara, associate professor at NAIST, remarked, “I am very glad to hear that this field test was successful. Data analysis and machine learning are now being applied to chemical plant operations, but technology that can be used in autonomous control and the optimization of operations has not been fully ready until now. The reinforcement learning AI FKDPP algorithm was jointly developed by Yokogawa and NAIST in 2018 to realize autonomous control in chemical plants. Despite having to refer to a large number of sensors and control valves, the AI can generate a robust control policy in a limited number of learning trials. These features helped to improve the efficiency of the development process, and led to the achievement of autonomous control for a long period of 840 hours during the field test. I think this very difficult achievement of autonomous control in an actual distillation column and the fact that the level of practical application has been raised to the point where the entire production process and safety are integrated into one system have great significance for the entire industry. I look forward to seeing what happens next with this technology.”

Yokogawa Electric vice president and head of Yokogawa Products Headquarters, Kenji Hasegawa, added, “The success of this field test came from bringing together the deep knowledge of the production process and operational aspects that only the customer can provide, and Yokogawa’s strength of leveraging measurement, control, and information to produce value. It suggests that an autonomous control AI (FKDPP) can significantly contribute to the autonomization of production, maximization of ROI, and environmental sustainability around the world. Yokogawa led the world in the development of distributed control systems that control and monitor the operation of plant production facilities, and has supported the growth of a range of industries. With our gaze fixed firmly on a world of autonomous operation that forms the model for the future of industries, we are now promoting the concept of IA2IA – Industrial Automation to Industrial Autonomy. To achieve strong and flexible production that takes into consideration the impact of differences in humans, machines, materials, and methods, the 4Ms, in the energy, materials, pharmaceuticals, and many other industries, we will accelerate the joint development of autonomous control AI with our customers around the world.”


Based on Yokogawa Electric survey conducted in February 2022 regarding AI that directly changes the manipulative variable in the chemical plant.


Proportional-Integral-Derivative control. First proposed by Nicolas Minorsky in 1922, this is an infrastructure control technology for processing industries that is used to control items such as quantity, temperature, level, pressure, and ingredients. It implements control toward a target value while using the results of each of the P, I, and D calculations according to the deviation between the current value and the set value. There are issues with this mode of control such as an inability to deal with multiple external disturbances (weather, climate, material composition changes) and frequent changes to target values, thereby necessitating manual control.


Advanced Process Control. This uses a mathematical model that can predict process responses and gives set values to the PID control loop in real time in order to improve productivity, quality, and controllability. It is also easily applied to control for the purpose of increasing production, reducing labor time, and saving energy. Incorporating APC results in smaller deviations in data, making it possible to get closer to the limits of operating performance (i.e., the state in which the optimum performance can be obtained). However, it is limited by the fact that it is not adept at responding to the rapid vaporization of fluids and other such chemical reactions, major changes in material composition, and changes in machinery.


The volume of the target substance that is actually obtained from raw materials through the refinement process


The CENTUM VP integrated control system allows the entire production process to proceed while monitoring and controlling pressures, flow rates, temperatures, and other such factors, as well as integrating various interlocking functions for safe and stable operation and accident prevention. To prevent plant accidents, it is possible to operate in cooperation with safety instrumented systems (SIS), emergency shutoff devices (ESD), fire protection systems (F&G), etc.


A mechanism that prevents startup unless certain conditions are fulfilled prior to operation. It increases safety by preventing incorrect operations, procedural mistakes, and the like.


Factorial Kernel Dynamic Policy Programming for Vinyl Acetate Monomer Plant Model Control, August 2018. The IEEE (Institute of Electrical and Electronics Engineers) is a US-based academic research and technical standardization organization that focuses on the fields of electrical and information engineering. It has more than 400,000 members in 160 countries around the world.


A three tank level control system that is used to perform training and experiments involving the regulation of the flow of water from one level to the next, with the overall aim of controlling the water level at the lowest stage. It also includes devices to artificially create disturbances that randomly change the flow of water. Given the nature of fluids, the control of their flow rates is a difficult challenge in the processing industries. Being able to adequately perform this control leads to increased productivity at manufacturing sites.


Scalable Reinforcement Learning for Plant-wide Control of Vinyl Acetate Monomer Process, Control Engineering Practice, Volume 97, April 2020


Yokogawa defines autonomous control AI as AI that deduces the optimum method for control independently and has a high level of robustness enabling it to autonomously handle, to a certain extent, situations that it has not previously encountered.


Industrial autonomy is defined by Yokogawa as follows: “Plant assets and operations have learning and adaptive capabilities that allow responses with minimal human interaction, empowering operators to perform higher-level optimization tasks." In the responses to the Global End-User Survey on the Implementation of Industrial Autonomy carried out by Yokogawa in 2021 covering 534 decision makers at 390 manufacturing companies, 42% said that the application of AI to plant process optimization will have a significant impact on industrial autonomy in the next three years.


The names of corporations, organizations, products, services and logos herein are either registered trademarks or trademarks of Yokogawa Electric Corporation, JSR Corporation, or their respective holders.

About Yokogawa

Yokogawa provides advanced solutions in the areas of measurement, control, and information to customers across a broad range of industries, including energy, chemicals, materials, pharmaceuticals, and food. Yokogawa addresses customer issues regarding the optimization of production, assets, and the supply chain with the effective application of digital technologies, enabling the transition to autonomous operations.
Founded in Tokyo in 1915, Yokogawa continues to work toward a sustainable society through its 17,500 employees in a global network of 119 companies spanning 61 countries.
For more information, visit

About JSR Corporation

JSR Corporation is a multinational company employing more than 9,000 people worldwide and a leading materials supplier in a variety of technology driven markets, driving materials innovation and creating value through materials to enrich society, people and the environment. JSR's global network is headquartered in Tokyo (Japan) and has factories and offices in Europe, USA, China, Taiwan, Korea, and Thailand. JSR is a research-oriented organization that pursues close collaborations with leading innovators in a number of industries that are a key to the present and future welfare of human society: life-sciences, electronic materials, display, plastics and synthetic rubbers.
For more information about JSR Corporation, please visit

Overview of Field Test

1. Purpose of field test

(1) To demonstrate that reinforcement learning AI (FKDPP: Factorial Kernel Dynamic Policy Programming algorithm) can be applied safely in plants where safety is an absolute necessity
(2) To demonstrate that reinforcement learning AI can be used to control areas that existing control methods (PID control/APC) cannot automate 

2. Details


  • A JSR chemical plant in Japan


  • Distillation column
  • Areas where existing control methods (PID control/APC) could not be applied and control could only be performed manually (where operators considered the level of operation for valves and input this themselves)
  • Areas where rain, snow, and other weather conditions were significant factors that could disrupt the control state by causing sudden changes in the atmospheric temperature
  • When substances A and B, which had similar boiling points, were heated and separated, optimum control was performed to maintain liquids in the distillation column at an appropriate level so that all products were compliant with standards, while, to save energy, valves were operated to maximize the use of waste heat as the heat source for the distillation column and extract the desired substance A in an ideal state.

Control AI

  • Reinforcement learning AI (FKDPP: Factorial Kernel Dynamic Policy Programming algorithm)

Products & technologies


  • OmegaLand plant simulator (provided by Yokogawa Electric Corporation subsidiary Omega Simulation Co., Ltd.)
  • CENTUM VP integrated production control system
  • Exaopc OPC interface package (software that enables management of a variety of databases used in the processing industries. Uses an interface that is compliant with the OPC interface standard defined by the OPC foundation. Its functions include the automatic saving of process data.)
  • GA10 data logging software (for operation screen and input device (HMI) and data recording), etc.


  • Managed by CENTUM VP integrated production control system

Allows the entire production process to proceed while monitoring and controlling pressures, flow rates, temperatures, and other such factors, as well as integrating various interlocking functions for safe and stable operation and accident prevention. To prevent plant accidents, it operates in cooperation with emergency shutoff devices (ESD), fire protection systems (F&G), etc.

Process to AI implementation

Generate AI control model with a plant simulator

  • Plant model generated from design information for the relevant plant
  • Reinforcement learning-based AI (FKDPP algorithm) learned and generated a control model

Comprehensively assess AI control model validity and reliability

  • Checked with past operating data
    - Was it stable?
    - What kind of control was performed when problems occurred?
  • Checked with real-time data
    - Was it stable?
    - Was product quality within spec?
    - Were veteran operators satisfied with FKDPP control instructions?

Ensure safety, then control a real plant

  • Ensured safety with existing interlocks and other safety functions
  • Integrated with CENTUM VP integrated production control system, and incorporated into plant operations
  • Ensured safety in operations (planned responses and established system for dealing with AI system malfunctions)

Project period

  • August 2020 - February 2022 (1 year 6 months)

Period of continuous operation

  • 35 days, from January 17 to February 21, 2022 (840 hours)

3. Company roles


  • Provision of venue for experiment, detailed plant information, operating status
  • Setting of challenges for AI control system to solve
  • Engineering (connection with existing CENTUM VP integrated production control system)
  • Evaluation of safety and validity from the perspective of the AI control system
  • Consideration of safety systems for introduction of AI control systems in actual plants


  • Planning of proposals (AI system specs, schedule, etc.)
  • AI system construction
  • Engineering (adjustment of connection with existing CENTUM VP integrated production control system, etc.)
  • Maintenance

4. Results and comparison with conventional control


  • By combining both companies’ know-how and focusing on those areas at an actual plant that could not be automated with existing control methods, it was possible to find a method for the safe application of reinforcement learning AI in systems and operations.
  • Continuous control for a period of 35 days was achieved using an integrated production control system, and products suitable for shipment were successfully produced.
  • This suggests that as a next-generation control technology, reinforcement learning AI (FKDPP) can significantly contribute to autonomization, maximization of ROI, and environmental sustainability at plants around the world.


  • AI autonomous control integrated with CENTUM VP integrated production control system
  • Only monitoring was needed; basically, no human intervention was required.


  • Stable production of good quality products that met rigorous standards and were able to be shipped


  • Raw materials could be efficiently turned into products.


  • Energy savings were achieved by maximizing use of waste heat as the heat source, enabling a reduction in CO2 emissions.


  • Only good quality products were produced, so fuel and labor costs that are incurred due to the production of off-spec products were eliminated.


  • Only good quality products were produced, so time losses that occur due to the production of off-spec products were eliminated.


  • There is no longer a need for highly experienced operators to perform manual control 24 hours a day 365 days a year, meaning the burden on humans decreases and errors are prevented, leading to higher levels of safety.

5. [Reference] Main characteristics of AI used in plant control





For areas that cannot be automated with existing control methods (PID control/APC), the AI deduces the optimum method for control on its own and has the robustness to autonomously control, to a certain extent, situations that have not yet been encountered.

Based on the control model it learns and deduces, the AI inputs the level of control (manipulative variable) required for each situation.

The benefits of FKDPP are as follows:

(1) Can be applied in situations where control cannot be automated with existing control techniques (PID control and APC), and can handle conflicting targets, such as achieving both high quality and energy savings.
(2) Increases productivity (quality, energy saving, yield, shorter settling time)
(3) Simple (small number of learning trials, no need to import labeled data)
(4) Explainable operation
(5) Same safety as conventional systems (highly robust, can be directly linked to existing integrated production control systems)

Support for
areas with
built in

AI can take over the task, currently performed by operators, of inputting target values (set value) for areas where automation has been implemented using existing control methods (PID control/APC).

AI uses past control data to perform calculations, and enters target values (set value).

  • Automation of manual tasks and achievement of stable operations is possible.

Operational support for

AI proposes target values (set value) that operators will refer to when performing operations.

AI uses past control data to suggest target values (set value) to humans.

  • Differences due to operator proficiency level will disappear.

To view this piece of content from, please give your consent at the top of this page.

Contact information

PR Section
Integrated Communications Center
Yokogawa Electric Corporation

Corporate Communications Department
JSR Corporation

About Business Wire

Business Wire
Business Wire

Subscribe to releases from Business Wire

Subscribe to all the latest releases from Business Wire by registering your e-mail address below. You can unsubscribe at any time.

Latest releases from Business Wire

Dental Monitoring Launches the Virtual Practice Platform for a Comprehensive, Life-Long Patient Experience18.5.2022 22:10:00 CEST | Press release

Dental Monitoring, the industry-leading company that pioneered the field of intelligent orthodontics, launches the Virtual Practice Platform for a comprehensive, life-long patient experience. This press release features multimedia. View the full release here: More information: (Photo: Business Wire) This groundbreaking Virtual Practice Platform is designed for doctors and patients to partner along the entire treatment journey through a suite of intelligent workflows and tools. By using the platform, doctors will be able to identify, engage, qualify, and convert leads, optimize treatment and monitor patients, as well as benefit from opportunities for new revenue streams. Dental Monitoring is launching the Virtual Practice Platform as the increasing need for remote and intelligent care in the dental industry meets growing patient expectations. Through the platform, the SaaS company aims to spearhead widespread transformation for p

Align Announces Additional Leadership for UK and EMEA to Support Continued Growth18.5.2022 17:11:00 CEST | Press release

Align, the premier global provider of technology infrastructure solutions celebrates significant growth throughout the UK and EMEA markets with management changes to support increasing demand. The appointment of Giulia Marcolina as Managing Director and Mike Konold as AV Solutions Director of Align’s UK-based headquarters, will enable the team to deliver innovative collaborative technology and state-of-the-art AV solutions. This press release features multimedia. View the full release here: Giulia Marcolina, a 15 year veteran with Align, is named Managing Director of Align's UK-based headquarters. (Photo: Business Wire) Giulia brings over 25 years of IT experience, previously serving as Align’s Programme Manager, delivering corporate office relocation and consolidation projects for clients such as Blackrock, Total Gas and Power, and UBS. In her new role, she will lead Align’s team of project managers in building upon Align’s lon

RMS Advances Climate Risk Modeling and Moves More Models to High Definition18.5.2022 16:30:00 CEST | Press release

RMS®, a Moody’s Analytics company and world-leading risk modeling and solutions company, today announces it will be releasing four new High Definition™ (HD) models, including Europe Windstorm, North America Winterstorm (WT), North America Severe Convective Storm (SCS), and Terrorism. RMS HD Models represent the next generation of risk modeling, delivering deeper analysis and granularity from Moody’s. The HD probabilistic models incorporate a high-fidelity, simulation-based framework for modeling event frequency and severity, to provide a major step forward in the quality of catastrophe risk quantification. The framework allows for event footprints to be represented more realistically across larger event sets. The new RMS Europe Windstorm HD Model further enhances the current model and will cover 17 countries, adding Finland and Lichtenstein. The HD model includes a climate variability view and has expanded storm surge analytics to include the U.K., Ireland, France, and Belgium. Storm c

Suketu Upadhyay Elected to Vertex Board of Directors18.5.2022 16:30:00 CEST | Press release

Vertex Pharmaceuticals Incorporated (Nasdaq: VRTX) today announced that Suketu (“Suky”) Upadhyayhas been elected to its board of directors as an independent director. Mr. Upadhyay is a global business executive with more than 20 years of experience in the pharmaceutical and medical technology sectors, serving in financial and strategy roles covering multiple areas of the life sciences sector. He is currently the Executive Vice President and Chief Financial Officer of Zimmer Biomet, a leading global innovator and manufacturer of orthopedic solutions, a position he has held since July 2019. “We are delighted to have Suky join the Vertex Board. His extensive financial and strategic experience in health care, paired with his leadership and expertise across biopharma and medtech, make him a valuable addition to our board of directors,” said Reshma Kewalramani, M.D., Vertex’s Chief Executive Officer and President. “It’s an honor to join Vertex, a company focused on serial innovation with an

Armory Makes Continuous Deployment Achievable and Effortless, at any Scale, for all Developers18.5.2022 16:17:00 CEST | Press release

Armory, the Continuous Deployment company empowering development teams to easily, reliably, safely, and continuously deploy software at any scale, today announced public early access to their new Continuous Deployment-as-a-Service product. Armory Continuous Deployment-as-a-Service delivers declarative deployments, across multiple environments, that support advanced strategies, so developers can focus on building great code rather than deploying it. “We believe deploying software continuously, at any scale, should be achievable and effortless for all developers of the world, not just the likes of Google and Netflix,” said Jim Douglas, President and CEO, Armory. “It’s our vision and mission to unlock innovation through software to make software continuous, scalable, secure, and safe, so developers can improve and protect their customers’ experience with confidence and ease.” To effectively compete in a software-defined world, development teams must ensure a stellar customer experience. S

In our pressroom you can read all our latest releases, find our press contacts, images, documents and other relevant information about us.

Visit our pressroom