Early-stage lung disease could be detected with advanced imaging tech

An imaging process that today is used mainly in research labs could potentially detect early-stage lung disease if developed for use in hospitals and clinics, a new research study shows.
Researchers from KTH Royal Institute of Technology in Stockholm tested how a process called phase-contrast X-ray imaging could be used on human lungs, using a model developed at Duke University for simulating the human chest.
They reported that phase-contrast chest radiography can visualize the smallest airways—measuring less than 2mm—and their disease-related obstructions. The study’s lead authors, Ilian Häggmark and Kian Shaker, researchers at KTH Royal Institute of Technology, say that these are details that don’t show up in conventional radiography.
The researchers reported their findings in the Proceedings of the National Academy of Sciences (PNAS) of the United States of America.
Phase contrast imaging is used in research labs with equipment that today is limited in use to imaging centimeter-scale samples of soft tissue. But, Häggmark says, the study clearly shows that it’s possible to do more with phase-contrast X-ray imaging, if the technical demands for clinical use can be engineered.
The chest radiography that clinics and hospitals use today plays an important role in detecting respiratory disease, but it is fundamentally limited by the way in which it generates images, Häggmark says.
He says that the promising phase-contrast technique used in the study could show subtle pathological changes that are otherwise invisible with conventional X-ray imaging, which is important when screening for diseases like asthma or chronic obstructive pulmonary disease (COPD).
“Phase-contrast X-ray imaging can extract more information at higher resolution using the same amount of radiation dose as in conventional radiography,” Häggmark says.
In conventional radiography, the X-ray beam passes through the body, where it is absorbed along the way in different tissues by different amounts. On the other side, a detector measures the intensity of the beam—or what’s left of it—after it has been filtered through the body. This process is known as attenuation, and it’s the basic mechanism for providing the contrast that makes X-ray images useful.
The phase-contrast technique is a way of getting more information out of each X-ray beam. That’s because it’s possible to measure differences in the waveforms of X-rays that pass through a sample. X-ray beams encounter atoms and other structures that can change the position of the wave at any point in time—the phase—in relation to a reference wave. This phase information is used to generate an image that enhances structures in the sample, which in the human chest highlights the boundaries of bronchial walls and small airways with higher contrast and better resolution.
Häggmark says that one key to the method is to move the detector further away from the patient.
Development of equipment for imaging larger samples will take time, he says. “You need an X-ray source with both high power and a small emission spot,” he says. “Basically you need bright X-ray sources.”
He says that promising developments are being carried out, but it will take time for this to reach testing for human use,” he says.
“For now, simulations and virtual clinical trials are the perfect tools to explore what we can do when the source technology is ready.”
Keywords
Images
About KTH Royal Institute of Technology
Founded in 1827, KTH Royal Institute of Technology in Stockholm is one of the world's leading technical and engineering universities, as well as a key center of intellectual talent and innovation.
Subscribe to releases from KTH Royal Institute of Technology
Subscribe to all the latest releases from KTH Royal Institute of Technology by registering your e-mail address below. You can unsubscribe at any time.
Latest releases from KTH Royal Institute of Technology
For graphene production, a potential green alternative to mining graphite3.3.2025 14:14:40 CET | Press Release
Researchers in Sweden report a green alternative to reduce reliance on mining graphite, the raw source behind the "wonder material" graphene.
AI on aircraft can help prevent stalls and terrifying drops in altitude17.2.2025 15:58:14 CET | Press Release
Artificial intelligence could help prevent terrifying mid-air drops in altitude. In a new study, an international research team successfully tested a machine learning system for preventing trouble with turbulence.
Alternative to studded winter tires reduces airborne particles by 20 percent6.2.2025 14:41:07 CET | Press Release
On icy roads, studded winter tires can save lives – but they pulverize pavement and fill the air with dangerous, inhalable particles. A new Swedish study shows that both road wear and airborne particles could be reduced by as much as 20 percent if studs were made instead with an alternative hard metal.
As Scandinavian peninsula rises from sea, new satellite data shows gravity changes6.2.2025 09:15:25 CET | Press Release
Bouncing back from under the weight of Ice Age glaciers which have long since vanished, the Nordic region land mass is slowly rising above sea level. Two scientists at Sweden’s KTH Royal Institute of Technology have a refined a method for measuring and predicting the small details of how this slow movement changes Earth’s gravitational pull over time. One thing they found is that the Fennoscandinavian peninsula's land mass is more dense than previously known.
Study on ship sliming may enable reduced costs and emissions in ocean transport21.1.2025 11:25:01 CET | Press Release
Slime build-up is a costly drag on fuel efficiency for ocean-going cargo ships, leading to more emissions and, eventually, higher consumer prices. A recent study, however, suggests a new approach to managing this common problem.
In our pressroom you can read all our latest releases, find our press contacts, images, documents and other relevant information about us.
Visit our pressroom