Unique insight into the inner workings of our cellular powerplants
Using advanced microscopy techniques, researchers at Karolinska Institutet and Stockholm University in Sweden have visualized in unprecedented detail the machinery that the cells’ powerhouses, the mitochondria, use to form their proteins. The results, which are published in Nature, raise hopes of more specific antibiotics and new cancer drugs in the future.

The mitochondria are the cells' powerhouses that convert energy locked in our food into a functional ”energy currency” for the cells. They also have their own protein synthesis factories called ribosomes, which have a different appearance to those found in the cellular cytoplasm. However, little has been known about how the mitochondrial ribosomes are produced - until now.
”We were hoping to obtain a single snapshot of the mitoribosomal large subunit assembly, but our data revealed much more unexpected surprises,” says the study's joint first author Anas Khawaya, postdoc at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet. ”These observations present opportunities to discover the full extent of crosstalk between mitoribosomal assembly and other aspects of mitochondrial function.”
Using a technique called cryogenic electron microscopy, the researchers were able to depict important key players of the complex machinery that manufactures ribosomes. One finding was that a component called ribosome-binding factor A (RBFA) orchestrates the process. The ribosome is made up of two halves, not unlike a hamburger bun. The researchers' analyses show that a protein called mS37 signals that these two parts can be joined and are ready to start protein synthesis.
Clinical potential
The results are an example of basic cell biology research, but the new knowledge can also give rise to medical advances, such as more targeted antibiotics. Mitochondria are similar to bacteria and the antibiotics that currently attack a bacterium's ability to form proteins also affect our mitochondria.
”Whilst the mechanisms of bacterial and cytosolic translation have been studied for decades, we are only now starting to uncover how mitochondria produce proteins,” says Joanna Rorbach, principal researcher and group leader at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet. ”Understanding the differences between how bacteria and mitochondria produce their ribosomes could allow us to design better and more targeted antibiotics.”
The study has been led by Joanna Rorbach together with Alexey Amunts and his research group at the Department of Biochemistry and Biophysics at Stockholm University.
Cancer is another future target. Unlike healthy cells, cancer cells grow quickly and divide often, a process that requires the formation of a large number of new proteins.
”One possible approach is to actively inhibit the cancer cells' mitochondrial ribosomes,” Joanna Rorbach says.
The study was supported by grants from the Max Planck Society, the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the European Research Council, the Swedish Foundation for Strategic Research, the Marie Sklodowska Curie Initiative and Karolinska Institutet.
Publication: ”Mechanism of mitoribosomal small unit biogenesis and preinitiation.” Yuzuru Itoh*, Anas Khawaja*, Ivan Laptev, Miriam Cipullo, Ilian Atanassov, Petr Sergiev, Joanna Rorbach# och Alexey Amunts#. Nature, online June 8, 2022, doi: 10.1038/s41586-022-04795-x* joint first authors, # corresponding authors
For more information, please contact:Joanna Rorbach, principal researcherDepartment of Medical Biochemistry and Biophysics, Karolinska Institutet Phone: +46 763 142 079Email: joanna.rorbach@ki.se
Anas Khawaya, postdocDepartment of Medical Biochemistry and Biophysics, Karolinska InstitutetPhone: +46 762 070 631Email: anas.khawaja@ki.se
Contacts
Contact the Press Office and download photo: ki.se/pressroom
Images

Karolinska Institutet (https://ki.se/en) is one of the world’s leading medical universities. Our vision is to advance knowledge about life and strive towards better health for all. Karolinska Institutet accounts for the single largest share of all academic medical research conducted in Sweden and offers the country’s broadest range of education in medicine and health sciences. The Nobel Assembly at Karolinska Institutet selects the Nobel laureates in Physiology or Medicine.
Subscribe to releases from Karolinska Institutet - English
Subscribe to all the latest releases from Karolinska Institutet - English by registering your e-mail address below. You can unsubscribe at any time.
Latest releases from Karolinska Institutet - English
Fluoride in drinking water is associated with impaired childhood cognition7.3.2025 15:30:00 CET | Pressmeddelande
Elevated concentrations of fluoride can occur in well water, and in some countries, it is added to drinking water to counteract caries in the population. A study from Karolinska Institutet in Sweden now supports a few previous studies indicating that exposure to fluoride during the fetal stage or early childhood may impair cognition in children. The study is published in the journal Environmental Health Perspectives.
Children with ARFID face increased risk of disease17.2.2025 17:00:00 CET | Pressmeddelande
Children with avoidant restrictive food intake disorder (ARFID) have an elevated risk of developing psychiatric and physical conditions, a new study from Karolinska Institutet published in JAMA Pediatrics reports. The study highlights the importance of early identification to improve care of these children.
Preterm babies receive insufficient pain management27.1.2025 15:29:17 CET | Pressmeddelande
A large proportion of babies born very early need intensive care, which can be painful. But the healthcare system fails to provide pain relief to the full extent. This is shown by the largest survey to date of pain in neonatal care, now published in the journal Pain.
New study paves way for immunotherapies tailored for childhood cancers20.1.2025 17:00:00 CET | Pressmeddelande
Researchers at Karolinska Institutet and the Astrid Lindgren Children’s Hospital in Sweden have determined how children’s immune systems react to different kinds of cancer depending on their age. The study, which is published in the journal Cell, reveals significant differences between the immune response of children and adults, and has the potential to lead to new tailored treatments for children with cancer.
AI can improve ovarian cancer diagnoses2.1.2025 11:00:00 CET | Pressmeddelande
A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is published in Nature Medicine.
In our pressroom you can read all our latest releases, find our press contacts, images, documents and other relevant information about us.
Visit our pressroom