New potential treatment for aggressive types of childhood cancer
[PRESS RELEASE 2017-07-11] A combination of substances that impacts chemical modifications in the DNA of tumours and triggers the tumours to differentiate into harmless nerve cells could represent a new method of treating aggressive forms of neuroblastoma. The new method has been proposed by researchers at Karolinska Institutet, after studies using mice showed that the combination treatment resulted in a significant suppression in tumour growth. The study, published in PNAS, also questions a hypothesis within the research field that could result in potentially harmful wrong treatment of children with neuroblastoma.
Neuroblastoma affects the peripheral nervous system in children and is a tumour disease with different facets. A number of these tumours disappear naturally and others respond well to the treatment available. There are however some types of neuroblastoma that are very aggressive and, in many cases, do not respond to treatment. Mortality among these high-risk patients is high and there is therefore a substantial requirement for new and efficient methods of treatment.
During the study, the researchers treated mice with the substance AZA, which blocks and eliminates methyl groups from the DNA of cancer cells, aiming to activate genes that fight the origins of neuroblastoma. AZA was then combined with treatment with retinoic acid (RA), a substance that has the capacity to make certain tumour cells differentiate, mature, into harmless nerve cells.
Neither AZA nor RA could individually suppress the growth of high-risk tumours, but the combination treatment resulted in a significant suppression in tumour growth in the mice. The treatment induced expression of a factor called HIF2α, why the researchers also tested a combination with a HIF2α inhibitor. Such inhibitors have been proposed as an alternative treatment for neuroblastoma as the HIF2α protein has previously been described as being coupled to more aggressive forms of neuroblastoma. HIF2α inhibitor are currently being subject to clinical trials for treatment of other tumour diseases.
”Interestingly, it emerged that the effect of our combination treatment with AZA and RA was, in fact, counteracted by the HIF2α inhibitor. Moreover, analyses of large volumes of patient data show that HIF2α is not coupled to aggressive types of neuroblastoma, but can be linked to a lower risk and improved survival for patients,” explains Johan Holmberg, researcher at the Ludwig Institute for Cancer Research and the Department of Cell and Molecular Biology at Karolinska Institutet.
The role played by the HIF2α inhibitors requires further study before they can be used to treat neuroblastoma patients,” confirm the researchers.
”In addition to demonstrating the effect of a new potential combination treatment, our study questions a hypothesis that may result in potentially harmful wrong treatment of children with neuroblastoma. The study could therefore be of importance for future clinical applications,” says Johan Holmberg.
The research has been financed by StratCan, the Swedish Cancer Society, the Swedish Childhood Cancer Foundation, the Swedish Research Council, the Ludwig Institute for Cancer Research and the Knut and Alice Wallenberg Foundation.
Publications: ”Combined epigenetic and differentiation based treatment inhibits
neuroblastoma tumor growth and links HIF2α to tumor suppression”. Isabelle Westerlund, Yao Shi, Konstantinos Toskas, Stuart M Fell, Shuijie Li, Olga Surova, Erik Södersten, Per Kogner, Ulrika Nyman, Susanne Schlisio & Johan Holmberg. Proceedings of the National Academy of Sciences (PNAS), online 10 July 2017.
Contacts
Johan Holmberg, researcher
The Department of Cell and Molecular Biology, Karolinska Institutet
The Ludwig Institute of Cancer Research
Tel: +46 (0)72-221 27 02
Email: Johan.Holmberg@ki.se
Karolinska Institutet is one of the world’s leading medical universities. Its vision is to significantly contribute to the improvement of human health. Karolinska Institutet accounts for the single largest share of all academic medical research conducted in Sweden and offers the country’s broadest range of education in medicine and health sciences. The Nobel Assembly at Karolinska Institutet selects the Nobel laureates in Physiology or Medicine.
Subscribe to releases from Karolinska Institutet - English
Subscribe to all the latest releases from Karolinska Institutet - English by registering your e-mail address below. You can unsubscribe at any time.
Latest releases from Karolinska Institutet - English
New method reveals how the brain and inner ear are formed3.4.2025 20:00:00 CEST | Pressmeddelande
Researchers at Karolinska Institutet have developed a method that shows how the nervous system and sensory organs are formed in an embryo. By labelling stem cells with a genetic ‘barcode’, they have been able to follow the cells’ developmental journey and discover how the inner ear is formed in mice. The discovery, published in Science, could provide important insights for future treatment of hearing loss.
Fluoride in drinking water is associated with impaired childhood cognition7.3.2025 15:30:00 CET | Pressmeddelande
Elevated concentrations of fluoride can occur in well water, and in some countries, it is added to drinking water to counteract caries in the population. A study from Karolinska Institutet in Sweden now supports a few previous studies indicating that exposure to fluoride during the fetal stage or early childhood may impair cognition in children. The study is published in the journal Environmental Health Perspectives.
Children with ARFID face increased risk of disease17.2.2025 17:00:00 CET | Pressmeddelande
Children with avoidant restrictive food intake disorder (ARFID) have an elevated risk of developing psychiatric and physical conditions, a new study from Karolinska Institutet published in JAMA Pediatrics reports. The study highlights the importance of early identification to improve care of these children.
Preterm babies receive insufficient pain management27.1.2025 15:29:17 CET | Pressmeddelande
A large proportion of babies born very early need intensive care, which can be painful. But the healthcare system fails to provide pain relief to the full extent. This is shown by the largest survey to date of pain in neonatal care, now published in the journal Pain.
New study paves way for immunotherapies tailored for childhood cancers20.1.2025 17:00:00 CET | Pressmeddelande
Researchers at Karolinska Institutet and the Astrid Lindgren Children’s Hospital in Sweden have determined how children’s immune systems react to different kinds of cancer depending on their age. The study, which is published in the journal Cell, reveals significant differences between the immune response of children and adults, and has the potential to lead to new tailored treatments for children with cancer.
In our pressroom you can read all our latest releases, find our press contacts, images, documents and other relevant information about us.
Visit our pressroom