Hope for new treatment for Huntington’s disease
Researchers working at Karolinska Institutet in Sweden and University of Southern Denmark have managed to produce short synthetic DNA analogues - oligonucleotides - that bind direct to the gene that is mutated in Huntington's disease and prevent the production of a protein that damages the nerve cells. The discovery, published in the journal Nucleic Acids Research, opens the way for new approaches to treating the currently untreatable and deadly neurodegenerative disease.
Huntington's disease is a devastating inherited condition that produces a combination of neurological, motor, cognitive and psychiatric symptoms. It is caused by the multiple repetition in the genome of a specific DNA sequence (CAG/CTG) in the HTT gene, which codes for a protein called huntingtin. The protein and the messenger RNA (mRNA) formed by the mutated gene damage the nerve cells in the brain and cause them to degrade.
Current treatments only alleviate the symptoms, as there is no way of halting the progressing of the disease. However, researchers are looking into a process called antisense therapy, in which short synthetic DNA analogues - oligonucleotides - bind to and inactivate mRNA to prevent it forming harmful proteins.
”We've taken this a step further and created oligonucleotides that bind direct to the damaged DNA sequence and block the production of both mRNA and protein,” says Edvard Smith, senior physician and professor at Karolinska Institutet's Department of Laboratory Medicine. ”It was thought by many to be too difficult to target the double-stranded DNA, but we have demonstrated that it actually works.”
The short oligonucleotides comprise a combination of DNA and LNA (locked nucleic acid) and binds to the repeated CTG sequence in the HTT gene. When the researchers delivered them into cell lines from patients with Huntington's disease, they observed a substantial reduction in the production of mRNA and protein. The next step will be to test the method on mice.
”We are fairly confident that this will also work since our oligonucleotides were taken up spontaneously by the cells,” says Professor Smith. ”The idea is to administer them into the cerebrospinal fluid.”
Antisense therapy is itself not a novel or untested method. The first oligonucleotide-based drugs were approved back in 1998 for the treatment of cytomegalovirus infection, and as recently as December 2016 another was approved in the USA for spinal muscular atrophy.
The present study was a collaboration between researchers working at Karolinska Institutet, the University of Southern Denmark and Karolinska University Hospital. Seven of the authors have submitted a patent application related to their results. The study was financed with grants from the Swedish Research Council, the CHDI Foundation (USA), the Swedish Brain Fund, the Tore Nilson Foundation and the Swedish Cancer Society.
Publication: 'CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression', Zaghloul EM, Gissberg O, Moreno PMD, Siggens L, Hällbrink M, Jørgensen AS, Ekwall K, Zain R, Wengel J, Lundin KE, Smith CIE. Nucleic Acids Research, online 17 February 2017, doi: 10.1093/nar/gkx111.
Contacts
For more information, please contact:
Edvard Smith, professor/senior physician
Department of Laboratory Medicine
Phone: +46 (0) 8 585 836 51
E-mail: Edvard.Smith@ki.se
Contact the press office and download images (http://ki.se/pressroom)
Karolinska Institutet (http://ki.se/english) is one of the world's leading medical universities. Its vision is to significantly contribute to the improvement of human health. Karolinska Institutet accounts for over 40 per cent of the medical academic research conducted in Sweden and offers the country´s broadest range of education in medicine and health sciences. The Nobel Assembly at Karolinska Institutet selects the Nobel laureates in Physiology or Medicine.
Subscribe to releases from Karolinska Institutet - English
Subscribe to all the latest releases from Karolinska Institutet - English by registering your e-mail address below. You can unsubscribe at any time.
Latest releases from Karolinska Institutet - English
Using social media may impair children’s attention8.12.2025 06:01:00 CET | Press Release
Children who spend a significant amount of time on social media tend to experience a gradual decline in their ability to concentrate. This is according to a comprehensive study from Karolinska Institutet, published in Pediatrics Open Science, where researchers followed more than 8,000 children from around age 10 through age 14.
POTS common in patients with long COVID3.10.2025 11:33:37 CEST | Press Release
A new study from Karolinska Institutet in Sweden shows that an unusual heart rhythm disorder, POTS, is particularly common in people with long COVID. The majority of those affected are middle-aged women. The study is published in the scientific journal Circulation: Arrhythmia and Electrophysiology.
Simple test can predict risk of severe liver disease29.9.2025 09:00:00 CEST | Press Release
A new study from Karolinska Institutet, published in the scientific journal The BMJ, shows how a simple blood analysis can predict the risk of developing severe liver disease. The method may already start to be applied in primary care to enable the earlier detection of cirrhosis and cancer of the liver.
Press invitation: Announcement of the Nobel Prize in Physiology or Medicine 202523.9.2025 13:00:00 CEST | Press Invitation
The Nobel Prize in Physiology or Medicine 2025 will be announced on Monday October 6 at 11.30 am CEST (at the earliest).
How mutations in bodily tissues affect ageing20.8.2025 11:00:00 CEST | Pressmeddelande
Two new studies from Karolinska Institutet in Sweden have investigated how mutations that occur in muscles and blood vessels over time can affect ageing. The studies, which are published in Nature Aging, show that such mutations can reduce muscle strength and accelerate blood vessel ageing. The results can be of significance to the treatment of age-related diseases.
In our pressroom you can read all our latest releases, find our press contacts, images, documents and other relevant information about us.
Visit our pressroom