Breakthrough for new diabetes treatment
[PRESS RELEASE 27 September 2012] An international team of scientists, led from Karolinska Institutet in Sweden, have discovered an entirely new approach to the treatment of type II diabetes. The therapy involves the blockade of signalling by a protein known as VEGF-B and this prevents fat from accumulating in the 'wrong' places, such as in muscles and in the heart. As a result the cells within these tissues are once again able to respond to insulin.
In experiments on mice and rats, the scientists have managed to both prevent the development of type II diabetes and reverse the progression of established disease. The study is published in the prestigious scientific journal Nature, where it is described as a breakthrough in diabetes research. The findings are the result of a joint effort by Karolinska Institutet, the Ludwig Institute for Cancer Research and the Australian biopharmaceutical company CSL Limited, amongst others. ”It's a great feeling to present these results,” says Professor Ulf Eriksson of the Department of Medical Biochemistry and Biophysics at Karolinska Institutet. ”We discovered VEGF-B back in 1995, and since then the VEGF-B project has been a lengthy sojourn in the wilderness, but now we're making one important discovery after the other. In this present study we've shown that VEGF-B inhibition can be used to prevent and treat type II diabetes, and that this can be done with a drug candidate.” Type II diabetes is normally preceded by insulin resistance caused by obesity. When this happens, the cells no longer respond sufficiently to insulin, which leads to elevated levels of blood sugar. Insulin resistance is related to the storage of fat in the 'wrong' places, such as the muscles, blood vessels and heart, although exactly how this relationship works is not fully known. What scientists do know, however, is that the VEGF-B protein affects the transport and storage of fat in body tissue. This was discovered by Professor Ulf Eriksson's research group in a study published in Nature in 2010. These theories have now been developed for a new study in which VEGF-B signalling was blocked in a group of diabetic mice and rats. A total of four related studies are reported in the Nature paper. In one case, mice bred to spontaneously develop diabetes were given a drug candidate called 2H10, which is an antibody that blocks the effect of VEGF-B. The mice subsequently developed neither insulin resistance, nor diabetes. The team also crossed the diabetes strain of mice with one that lacked the ability to produce VEGF-B, and found that the offspring were protected from developing the disease. In another two studies, the scientists took normal mice and rats that had not been specially bread to develop type II diabetes, and left them to develop the disease as a result of a fat-rich diet and the resulting obesity. In these cases, progression of the established disease was halted and reversed to varying degrees after treatment with 2H10. ”The results we present in this study represent a major breakthrough and an entirely new principle for the prevention and treatment of type II diabetes,” says Professor Åke Sjöholm, consultant in diabetology at Stockholm South General Hospital. ”Existing treatments can cause many adverse reactions and their effects normally wear off. There is a desperate need for new treatment strategies for type II diabetes.” Current treatments for type II diabetes normally involve initial dietary measures and/or pills designed to boost insulin secretion and sensitivity or to reduce glucose production. After a few years, such treatments eventually prove inadequate for up to 30 per cent of patients, who then require insulin injections. Type II diabetes is reaching epidemic proportions, and according to the World Health Organisation, is expected to afflict over half a billion people by 2030. The drug candidate used in the study, 2H10, is a monoclonal antibody and is being developed by the biopharmaceutical company CSL Limited. Scientists from CSL contributed to the work and the company co-funded the study. Funding was also supplied by the Ludwig Institute for Cancer Research, the Frans Wilhelm and Waldemar von Frenckell Fund, the Wilhelm and Else Stockmann Foundation, the Novo Nordisk Foundation, the Swedish Cancer Society, the Swedish Research Council, the Torsten and Ragnar Söderberg Foundations, the Research Foundation of the Swedish Diabetes Association (Diabetesfonden), the Peter Wallenberg Foundation for Economics and Technology, and the Swedish Heart-Lung Foundation. Earlier this year, Professor Eriksson was awarded the Heart-Lung Foundation's grand research grant of SEK 15 million (about € 1.7 million / $ 2.3 million) the largest in Sweden in the field of cardiovascular disease. The grant will be used to finance further research into VEGF-B. Publication: 'Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes', Carolina E. Hagberg, Annika Mehlem, Annelie Falkevall, Lars Muhl, Barbara C Fam, Henrik Ortsäter, Pierre Scotney, Daniel Nyqvist, Erik Samen, Li Lu, Sharon Stone-Elander, Joseph Proietto, Sofianos Andrikopoulos, Åke Sjöholm, Andrew Nash, Ulf Eriksson, Naturex, AOP 26 September 2012, doi: 10.1038/nature11464.
Contacts
For further information, please contact:
Professor Ulf Eriksson
Department of Medical Biochemistry and Biophysics - Karolinska Institutet
Mobile: +46 (0)70-680 50 56
Email: Ulf.PE.Eriksson@ki.se
Professor Åke Sjöholm, consultant
Department of Clinical Research and Education, Stockholm South General Hospital - Karolinska Institutet
Mobile: +46 (0)73-626 65 56
Email: ake.sjoholm@sodersjukhuset.se
Contact the Press Office and download photos: ki.se/pressroom
Karolinska Institutet (http://media.ne.cision.com/l/iyzveolg/media.ne.cision.com/l/ysfiplli/media.ne.cision.com/l/dfkybllg/ki.se/) is one of the world’s leading medical universities. It accounts for over 40 per cent of the medical academic research conducted in Sweden and offers the country’s broadest range of education in medicine and health sciences. Since 1901 the Nobel Assembly at Karolinska Institutet has selected the Nobel laureates in Physiology or Medicine.
Subscribe to releases from Karolinska Institutet - English
Subscribe to all the latest releases from Karolinska Institutet - English by registering your e-mail address below. You can unsubscribe at any time.
Latest releases from Karolinska Institutet - English
Fluoride in drinking water is associated with impaired childhood cognition7.3.2025 15:30:00 CET | Pressmeddelande
Elevated concentrations of fluoride can occur in well water, and in some countries, it is added to drinking water to counteract caries in the population. A study from Karolinska Institutet in Sweden now supports a few previous studies indicating that exposure to fluoride during the fetal stage or early childhood may impair cognition in children. The study is published in the journal Environmental Health Perspectives.
Children with ARFID face increased risk of disease17.2.2025 17:00:00 CET | Pressmeddelande
Children with avoidant restrictive food intake disorder (ARFID) have an elevated risk of developing psychiatric and physical conditions, a new study from Karolinska Institutet published in JAMA Pediatrics reports. The study highlights the importance of early identification to improve care of these children.
Preterm babies receive insufficient pain management27.1.2025 15:29:17 CET | Pressmeddelande
A large proportion of babies born very early need intensive care, which can be painful. But the healthcare system fails to provide pain relief to the full extent. This is shown by the largest survey to date of pain in neonatal care, now published in the journal Pain.
New study paves way for immunotherapies tailored for childhood cancers20.1.2025 17:00:00 CET | Pressmeddelande
Researchers at Karolinska Institutet and the Astrid Lindgren Children’s Hospital in Sweden have determined how children’s immune systems react to different kinds of cancer depending on their age. The study, which is published in the journal Cell, reveals significant differences between the immune response of children and adults, and has the potential to lead to new tailored treatments for children with cancer.
AI can improve ovarian cancer diagnoses2.1.2025 11:00:00 CET | Pressmeddelande
A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is published in Nature Medicine.
In our pressroom you can read all our latest releases, find our press contacts, images, documents and other relevant information about us.
Visit our pressroom