Researchers prevent mice from developing diabetes
A Swedish research group headed at Karolinska Institutet has been able to prevent onset of Type 1 diabetes in mice that are genetically susceptible to the disease. Through injection of specifically prepared cells, the researchers managed to stop the ongoing destruction of insulin-producing pancreatic beta cells in mice just prior to clinical debut of diabetes.
Type 1 diabetes is an autoimmune disease in which the immune system begins to attack and destroy the insulin-producing beta cells. This leads to a deficiency in production of insulin, which individuals with Type 1 diabetes thereafter have to inject. The initial cause of this autoimmune destruction is currently not known. However, it is known that macrophages, a particular type of immune cells, have an active role in the destruction of pancreatic beta cells in Type 1 diabetes. Yet macrophages can also exhibit the opposite properties; earlier studies have demonstrated that macrophages can protect against inflammation-mediated tissue damage. Immune cells utilise signal molecules termed cytokines in order to communicate with each other, giving instructions as to how the cells should act. In the current article, published in the scientific journal Diabetes, the researchers aimed to determine which cytokines were necessary to instruct macrophages to become protective cells. ”We managed to achieve this aim, defining a novel combination of cytokines that confer on macrophages the ability to protect mice from developing Type 1 diabetes”, says Robert Harris, lead researcher at the Department of Clinical Neuroscience and based at the Centre for Molecular Medicine, Karolinska Institutet. ”It has never previously been reported, that such an adoptive transfer cell therapy can be used in Type 1 diabetes and this study could thus represent a major advance towards disease prevention” The researchers used so-called NOD mice which are genetically susceptible to developing Type 1 diabetes spontaneously between 12-30 weeks of age. The researchers grew macrophages from bone marrow progenitors from these mice. The mature macrophages were then stimulated with the defined combination of cytokines. When NOD mice were 16 weeks old separate groups were treated with either cytokine-stimulated macrophages, untreated macrophages of were not treated. The mice were monitored for a further 12 weeks post-treatment. Using a specific three-dimensional imaging technique developed at Umeå University, Sweden, the degree of immune-mediated attack of the beta cells could be visualized in each treatment group. At the end of the follow-up period only 25% of the mice receiving the cytokine-treated macrophages had developed Type 1 diabetes, while 83% of the control groups had become sick. ”The cell therapy was initiated just 2 weeks before mice developed clinical diabetes”, says Dr Harris. ”At this stage few insulin-producing beta cells remain in the pancreas, yet we were able to protect these so that the mice never developed diabetes. Such a successful late-stage intervention has never previously been reported and is a significant result of our study. At the time of their clinical Type 1 diabetes diagnosis, most human individuals have already lost most of their insulin-producing beta cells.” The study was supported by funding from the Swedish Research Council, The Swedish Child Diabetes Foundation, and Karolinska Institutet.
Publication: 'Adoptive Transfer of Immunomodulatory M2 Macrophages Prevents Type 1 Diabetes in NOD Mice', Roham Parsa, Pernilla Andresen, Alan Gillett, Sohel Mia, Xing-Mei Zhang, Sofia Mayans, Dan Holmberg, and Robert A. Harris, Diabetesx, online 28 June 201.
Contacts
For further information, please contact:
Robert Harris, PhD
Department of Clinical Neuroscience (http://ki.se/ki/jsp/polopoly.jsp?l=en&d=4329)
Centre for Molecular Medicine (http://www.cmm.ki.se/en/) (CMM)
Tel: +46 (0)8-517 765 61 or (0)70-763 07 32
E-mail: robert.harris@ki.se.
Contact the Press Office and download images: ki.se/pressroom
Karolinska Institutet (http://media.ne.cision.com/l/iyzveolg/media.ne.cision.com/l/ysfiplli/media.ne.cision.com/l/dfkybllg/ki.se/) is one of the world’s leading medical universities. It accounts for over 40 per cent of the medical academic research conducted in Sweden and offers the country’s broadest range of education in medicine and health sciences. Since 1901 the Nobel Assembly at Karolinska Institutet has selected the Nobel laureates in Physiology or Medicine.
Subscribe to releases from Karolinska Institutet - English
Subscribe to all the latest releases from Karolinska Institutet - English by registering your e-mail address below. You can unsubscribe at any time.
Latest releases from Karolinska Institutet - English
Fluoride in drinking water is associated with impaired childhood cognition7.3.2025 15:30:00 CET | Pressmeddelande
Elevated concentrations of fluoride can occur in well water, and in some countries, it is added to drinking water to counteract caries in the population. A study from Karolinska Institutet in Sweden now supports a few previous studies indicating that exposure to fluoride during the fetal stage or early childhood may impair cognition in children. The study is published in the journal Environmental Health Perspectives.
Children with ARFID face increased risk of disease17.2.2025 17:00:00 CET | Pressmeddelande
Children with avoidant restrictive food intake disorder (ARFID) have an elevated risk of developing psychiatric and physical conditions, a new study from Karolinska Institutet published in JAMA Pediatrics reports. The study highlights the importance of early identification to improve care of these children.
Preterm babies receive insufficient pain management27.1.2025 15:29:17 CET | Pressmeddelande
A large proportion of babies born very early need intensive care, which can be painful. But the healthcare system fails to provide pain relief to the full extent. This is shown by the largest survey to date of pain in neonatal care, now published in the journal Pain.
New study paves way for immunotherapies tailored for childhood cancers20.1.2025 17:00:00 CET | Pressmeddelande
Researchers at Karolinska Institutet and the Astrid Lindgren Children’s Hospital in Sweden have determined how children’s immune systems react to different kinds of cancer depending on their age. The study, which is published in the journal Cell, reveals significant differences between the immune response of children and adults, and has the potential to lead to new tailored treatments for children with cancer.
AI can improve ovarian cancer diagnoses2.1.2025 11:00:00 CET | Pressmeddelande
A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is published in Nature Medicine.
In our pressroom you can read all our latest releases, find our press contacts, images, documents and other relevant information about us.
Visit our pressroom