AI on aircraft can help prevent stalls and terrifying drops in altitude
Artificial intelligence could help prevent terrifying mid-air drops in altitude. In a new study, an international research team successfully tested a machine learning system for preventing trouble with turbulence.

Researchers from KTH Royal Institute of Technology and the Barcelona Supercomputing Center conducted tests on an AI system designed to enhance the effectiveness of experimental technologies for manipulating airflow on wing surfaces. The results indicate that these innovations work better when paired with deep reinforcement learning (DLR), in which the program adapts to airflow dynamics based on previously learned experiences.
The AI control system zeroes in on one particularly dangerous aerodynamic phenomenon known as flow detachment, or turbulent separation bubbles, says Ricardo Vinuesa, a fluid dynamics and machine learning researcher at KTH Royal Institute of Technology in Stockholm.
Flow detachment is as serious as it sounds. To stay aloft, airplanes need slow moving air underneath the wing, and fast moving air above it. The air moving over the wing surface needs to follow the wing shape, or “attach,” to the surface. Vinuesa says that when the air moving over the wing’s surface no longer follows the wing shape and instead breaks away, it creates a dangerous swirling or stalled airflow.
“This usually occurs when the wing is at a high angle of attack, or when the air slows down due to increasing pressure,” he says. “When this happens, lift decreases, and drag increases, which can lead to a stall and make the aircraft harder to control.”
The researchers report that they can reduce the area of these bubbles by 9 percent.
The team tested how effectively AI could control experimental devices that pulse air in and out of a small opening in the wing surface, known as synthetic jets. While such innovations are still in the experimental stage, aerospace engineers look them to complement physical features such as vortex generators that planes rely on to maintain the right balance of airflow above and below the wings.
Up to this point, the prevailing vision is these bursts should occur at regular periodic intervals. However, the study shows that periodic activation only reduces turbulence separation bubbles by 6.8 percent.
“This study highlights how important AI is for scientific innovation,” Vinuesa says. “It offers exciting implications for aerodynamics, energy efficiency and next-generation computational fluid dynamics.”
Links
Subscribe to releases from KTH Royal Institute of Technology
Subscribe to all the latest releases from KTH Royal Institute of Technology by registering your e-mail address below. You can unsubscribe at any time.
Latest releases from KTH Royal Institute of Technology
Alternative to BPA passes toxicity and sustainability standards set by EU innovation guidelines4.12.2025 11:07:37 CET | Press Release
Polyester and a host of other plastic products could potentially be manufactured with non-toxic and sustainable BPA alternatives identified in a multidisciplinary study published today by researchers in Sweden.
Study shows potential for more affordable and efficient hydrogen gas production3.12.2025 15:29:35 CET | Press Release
A recent advance in the science of hydrogen fuel production could enable higher output and more sustainable production of this renewable energy source, researchers with Stockholm’s KTH Royal Institute of Technology report.
Calcium-sensitive switch designed to boost efficacy of cancer drugs24.11.2025 21:11:53 CET | Press Release
Cancer-fighting antibody drugs are designed to penetrate tumor cells and release a lethal payload deep within, but too often they don’t make it that far. A new study shows how this Trojan Horse strategy works better by exploiting calcium differences outside and inside cells.
Potential treatment may prevent brain damage in premature babies11.11.2025 11:10:46 CET | Press Release
A treatment that could protect premature babies from brain damage showed promise in a recent study in Sweden. Using a first-of-its-kind prenatal brain model created with human cells, researchers observed new details about the effects of cerebral hemorrhages on stem cells during premature birth. And they successfully tested an antidote that reduced the damage.
Heart ‘blueprint’ reveals origins of defects and insights into fetal development29.10.2025 11:13:11 CET | Press Release
New research has produced a “blueprint” revealing how the human heart is built during prenatal development. It offers insights that could lead to improved prenatal care and new treatments for heart defects, such as holes between heart chambers or deformities of the heart valves.
In our pressroom you can read all our latest releases, find our press contacts, images, documents and other relevant information about us.
Visit our pressroom