As Scandinavian peninsula rises from sea, new satellite data shows gravity changes
Bouncing back from under the weight of Ice Age glaciers which have long since vanished, the Nordic region land mass is slowly rising above sea level. Two scientists at Sweden’s KTH Royal Institute of Technology have a refined a method for measuring and predicting the small details of how this slow movement changes Earth’s gravitational pull over time. One thing they found is that the Fennoscandinavian peninsula's land mass is more dense than previously known.

For decades, KTH researchers Mohammad Bagherbandi and Lars Sjöberg have been examining what’s informally known as the post-glacial rebound effect in Fennoscandinavia, a peninsula that includes Sweden, Norway, Finland and part of Russia. Their latest study reports a refined measurement method that combines remote sensing by satellite and terrestrial gravity data, as well as 3D positioning from GPS and similar satellite positioning systems.
The KTH researchers found that the density of the upper mantle is about 3,546 kilograms per cubic meter—slightly more than reported in earlier studies. It is widely believed the land mass rises by as much as 1 cm per year.
Bagherbandi, a research her in geodesy and land surveying at KTH, says the new technique highlights the value of satellite data in the field of geodesy, the science of accurately measuring and understanding the Earth's geometric shape, orientation in space, and gravity field
“Beginning 60 years ago, scientists were using terrestrial gravimeters to establish gravity reference system and study temporal changes in gravity associated with glacial isostatic adjustment (GIA),” Bagherbandi says. “Our study is an alternative technique to study this phenomenon."
This means researchers can now create alternative and comparable models of how the land and gravity are changing over time in the region, he says.
“This discovery helps us understand the slow ‘bounce-back’ of land after the Ice Age,” Bagherbandi says. “It also shows how important the Global Geodetic Observing System (GGOS) are for learning about Earth’s movements and gravity changes.”
A similar study is underway in the U.S., where scientists are evaluating an even larger region of North America that is known to be rising.
Bagherbandi says understanding these changes is valuable beyond the field of geodesy. It helps scientists improve their tools for studying Earth's geodynamics. It can also help with other fields, like preparing for rising sea levels and learning about natural disasters.
Read the scientific article:
Bagherbandi, M., Sjöberg, L.E. A short note on GIA related surface gravity versus height changes in Fennoscandia. Journal of Geodesy
Images


Subscribe to releases from KTH Royal Institute of Technology
Subscribe to all the latest releases from KTH Royal Institute of Technology by registering your e-mail address below. You can unsubscribe at any time.
Latest releases from KTH Royal Institute of Technology
Alternative to BPA passes toxicity and sustainability standards set by EU innovation guidelines4.12.2025 11:07:37 CET | Press Release
Polyester and a host of other plastic products could potentially be manufactured with non-toxic and sustainable BPA alternatives identified in a multidisciplinary study published today by researchers in Sweden.
Study shows potential for more affordable and efficient hydrogen gas production3.12.2025 15:29:35 CET | Press Release
A recent advance in the science of hydrogen fuel production could enable higher output and more sustainable production of this renewable energy source, researchers with Stockholm’s KTH Royal Institute of Technology report.
Calcium-sensitive switch designed to boost efficacy of cancer drugs24.11.2025 21:11:53 CET | Press Release
Cancer-fighting antibody drugs are designed to penetrate tumor cells and release a lethal payload deep within, but too often they don’t make it that far. A new study shows how this Trojan Horse strategy works better by exploiting calcium differences outside and inside cells.
Potential treatment may prevent brain damage in premature babies11.11.2025 11:10:46 CET | Press Release
A treatment that could protect premature babies from brain damage showed promise in a recent study in Sweden. Using a first-of-its-kind prenatal brain model created with human cells, researchers observed new details about the effects of cerebral hemorrhages on stem cells during premature birth. And they successfully tested an antidote that reduced the damage.
Heart ‘blueprint’ reveals origins of defects and insights into fetal development29.10.2025 11:13:11 CET | Press Release
New research has produced a “blueprint” revealing how the human heart is built during prenatal development. It offers insights that could lead to improved prenatal care and new treatments for heart defects, such as holes between heart chambers or deformities of the heart valves.
In our pressroom you can read all our latest releases, find our press contacts, images, documents and other relevant information about us.
Visit our pressroom